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The plane steady contact problem of tbermoelasticity when there is heat generation from friction, which arises when an infinite 
cylindrical punch moves wer the surface of an elastic half-space along its genera& is considered. It is assumed that heat exchange 
between the free boundary of the half-space and the surrounding medium obeys Newton’s law, while the condition for ideal 
thermal contact exists in the region in which the solids interact. The problem is reduced to a system of three integral equations 
in the heat fluxes and temperature. The effect of the thermal and mechanical properties of the cylinder and the half-space on 
the main contact characteristics is investigated numerically. Q 1998 Elsevier Science Ltd. All rights reserved. 

1. Suppose an elastic heat-conducting cylinder is pressed by a force P and slides along its generatrices 
with a constant velocity I/ over the surface of an elastic heat-conducting base (Fig. 1). As a result of 
the motion of the cylinder in the contact area (-a, a), friction forces z&x) occur which obey Amonton’s 
law and lead to heating of the rubbing solids. The heat generated is distributed between them depending 
on their properties and the contact conditions. Outside the contact area, heat exchange occurs between 
the solids and the external medium in accordance with Newton’s law. It is assumed that when solving 
the thermoelasticity problem for a cylinder it can be replaced by a half-space. It is also assumed that 
the friction forces have no effect on the plane deformation of the half-space. The thermoelastic processes 
in the solids are considered to be steady. 

All the characteristics which relate to the punch will be denoted by the subscript 1, while those relating 
to the half-space will Ibe denoted by the subscript 2. With these assumptions it is required to determine 
the size of the contact area, the distribution of the contact pressure, the heat fluxes, and also the 
temperature fields in the contacting solids. 

In mathematical terms, the problem reduces to solving the equations of steady thermoelasticity 
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for the punch (i = 1) ‘and for the half-space (i = 2) with the following boundary conditions on the line 
y=o 

4,(x)+q2(x)=-v61).(x), T,(x)=T*(x)=T(x), Ixka (1.2) 

(-l)iKia~/ay+h,~(X)=O, Ixl>a (1.3) 

o&1 =fp(x), Ix I < a (14 
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d(v;(x)-u,(x))ldr=-x/R, lxl<a (1.6) 
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Fig. 1. 

Here Ui and Vi are the components of the displacement vector, CT,,., @ cr@ CJ@) are the components of the *y, zy 
stress tensor, Ti is the temperature, qi is the heat flux and&) is the contact pressure. In addition, Vi, 
k, q, & hi are Poisson’s ratio, the shear modulus, the coefficient of linear thermal expansion, the thermal 
conductivity and the heat-transfer coefficient for the punch (i = 1) and the half-space (i = 2), respectively, 
fis the friction coefficient and R is the radius of curvature of the punch base. 

2. Applying a Fourier transformation with respect to the variablex to the solution of problem (l.l), 
(1.2), (1.5) we obtain that the surface temperatures of the contacting solids satisfy the integral equations 

- cos({z) 
Mi(Z) = j 

0 k+hilKi d5 (2.1) 

while the derivatives of the vertical thermoelastic displacements of the surfaces of these solids along 
the horizontal axis have the form 
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We note two limiting cases 
(a) hi = 0 (thermally insulated surfaces); letting the coefficients hi in (2.1) and (2.2) tend to zero, we 

obtain the well-known results [l, 21 

T(x) =$_j qi(x')M()(X*X')dx,** Mg(X,X~)=-InIX-X'l+Ci , a 
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where ci = const; 
(b) hi + 00; conditions (1.3) then have the form 

Ti(X)=O, 1x1 >c1 

and the solution of the problem, obtained by the method of dual integral equations, is given by relations 
similar to (2.3) and (2.4) with 

&(x,x’) = Arsh 
2g - X2 - XI2 

IAxq 
- Arsh( 1) 

In the two limiting cases of the problem the derivatives of the vertical displacements are identical. 
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By means of relatilons (2.2) we can satisfy boundary condition (1.6), using in this case conditions (1.2) 
and (1.4) and converting relations (2.1) taking the second condition of (1.2) into account, and we then 
change to the dimensionless quantities 

x=US, x’ = ur, p(x) = z p.(s), T(x) = - KrK2 T*(s) 

As a result we obtain a system of three integral equations in terms of the temperature and heat fluxes 
(we omit the asterisks) 

(2.6) 
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We need to solve the system of integral equations obtained with the condition of equilibrium of the 
punch, which, taking the first condition of (1.2) into account, can be written in the dimensionless form 

(2.7) 

Here 
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where k;: are the thermal diffusivities of the solids. 
The half-length of the contact area au and the pressing force PH in the corresponding Hertz problem 

are related by the equation [3] 

The kernels of the system of integral equations have the form 

Mi(z) = j ~ ads, Ni(Z)=~ sinddr 
I 0 C+B1i 

To evaluate these we will use the representations in terms of the integral sine and cosine [4] 

M;(t)=-Ci(/z IBii)cos(~Bi~)-si( IzI Bii)sin( JzlBi,) 

N,.(z) = [Ci( I z I Bi,) sin( I z ]Bii) - si( I z I Bii) coslz Bii)] sign(z) 

The kernels N&Z) are regular while Mi(Z) have a logarithmic singularity. 
The contact area is also unknown in the system of integral equations (2.6). It can be determined by 

iteration, checking that condition (2.7) is satisfied. Here we used a more simple method: the half-length 
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of the contact area was specified (for example,_a/uH = 1, which corresponds to the isothermal contact 
area), and from system (2.6), (2.7) the ratio P, necessary to maintain a specified contact area, was 
determined. This approach was used in [2]. 

After solving the system of integral equations (2.6) and (2.7) the dimensionless contact pressure is 
found from the relation 

PO)=-[q,W+q*(s)l, I&l 
Assuming the half-space to be absolutely rigid (~12 + 00, & = 0) and non-heat-conducting (Kz = 0), 

we obtain from (2.6) and (2.7) a system of two equations of the problem for a single solid [5]. 

3. It can be seen from the system of integral equations (2.6) and (2.7) that the operator on the heat- 
flux function is a Cauchy operator of the first kind, while the operator on the temperature is a Fredhohn 
operator of the second kind with a logarithmic kernel. We will therefore represent the heat fluxes in 
the form 

qi(S)=Cpi(S)(l-S*)’ (3.1) 

where Cpi(S) are regular functions, while the temperature will be sought in the space of bounded functions. 
To discretize the system of integral equations obtained, we will use the Gauss-Chebyshev quadrature 

formulae [6] for the integrals with heat fluxes and the trapezium quadrature formulae for the integrals 
with temperature. As a result we obtain a closed system of linear algebraic equations for determining 
the ratio P, and also the values of the required functions cpi(s) and T(S) at discrete points of the contact 
area. The system obtained is solved on a computer. 

4. The input parameters of the problem are the Biot coefficients: Bir and Bi, the ratios 6 andK, and also 
the complex characteristicfPeH. Instead of the quantity 6 it is more convenient to consider the parameter 

x = (1 + 6K)l[(l + K) (1 + 6)] 

the role of which will be indicated below. 
To study the thermal contact between the solids an important quantity is the coefficient of the 

distribution of the heat fluxes between the solids 

,=Li 4,(x)-q*(x) dx 
2 -I 41(x)+q*(x) 

In Fig. 2 we show this quantity as a function of the parameter K for fixed Bir = 1 for different values 
of the coefficient Bi2. When Bir = Bi2 we obtain from the system of integral equations (2.6) 

q=(l-K)l(l +K) 

Fig. 2. 
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Figure 2 shows that an increase in the heat exchange on the free surface of one of the solids leads 
to an increase in the heat flux entering the same solid. Calculations enable us to choose the combination 
of the parameter K and the Biot coefficients to obtain the necessary heat-flux distribution between the 
solids. 

The temperature distribution in the contact area when Bii = Bil is shown in Fig. 3(a). An increase 
in the heat generation leads to a considerable reduction in the temperature level at the contact. The 
dashed curve corresponds to the case when Bii, Bi2 + 00 and shows the temperature distribution 
calculated using (2.3) and (2.5). Note that in the other limiting case when Bii = Bi2 = 0 the temperatures 
in the solids may be calculated from (2.3) only after specifying an additional condition defining the 
constants cti The temperature distribution when Bii = BiZ is independent of K. If the Biot constants 
are different: Bii = 1, Biz = 0.1 (Fig. 3b), the temperature distribution depends on the ratio of the 
thermal conductivities of the solids K. In view of the symmetrical form of the temperature it is only 
given on one half of the contact area. 

When solving the problem we also determine the ratio F, which enables us to compare the size of 
the contact area obtained with the corresponding solution of the Hertz problem. For a single solid, when 
the surface outside the contact area is thermally insulated, it was shown in [7] that the contact area is 
less than in the corresponding Hertz problem. Moreover, it was found that there is a critical value of 
the parameterflelf for which P = 0 (i.e. it is necessary to apply an infinitely large force P in order to 
obtain a contact area that is the same as in the problem without heat generation). The numerical analysis 
carried out here enables us to investigate the effect of heat generation on P, and of course, on the contact 
area. 

Note that there are combinations of the input parameters of the problem for which the heat generation 
has no effect on the size of the contact area. One of these cases is obtained when K = 0 and x = 1, 
which corresponds to the contact between an elastic heat-conducting cylinder and a rigid thermally 
insulated base. 

The second case arises for all values of K when Bii = 
increases and, moreover, depends only on the parameter 

Bi2. Then the ratio p falls linearly as fleH 

P=l-xfPeH/[fPeZ-& 

where [fpeH],-, = 1.16 is the critical value of the parameterfPeH, obtained in [7] for the case of a single 
thermoelastic solid. The value P decreases as x increases, and consequently, the contact area also 
decreases. 

In Fig. 4 we show P as a function of x for fixed values offPeH = 0.1 and Bii = 1 for different values 
of Biz. It can be seen that when x = 0.5 the ratio P is also independent of the heat generation, where 
this occurs for all values of K. 

, - 
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Fig. 3. 
Fig. 4. 
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In general, the ratio p depends 1inearIy on jPeH 

F=l-fPeHl[fPeH] 

where the critical value VPe H] is a function of the coefficients Bii. The effect of hat generation on the 
value of [f Pe H] is given below for two values of x and K = 0.5 

Biz 0.01 0.1 1.0 5.0 10.0 
[f Pe H] for x = 2.0 0.33 0.41 0.57 0.84 1.13 
cf Pe H] for x = 0.4 3.64 3.25 2.86 2.63 2.52 

When obtaining these results the value of one of the Biot parameters was fixed (Bit = 1) and the 
parameter BiZ was varied. When x = 2 an increase in the heat generation on the surface of one of the 
solids leads to an increase in [f Pe HJ and, of course, to an increase in P and of the contact area. In the 
other case (x = 0.4) the opposite effects occur. This phenomenon is due to the fact that the parameter 
x passes through the value x = 0.5. 
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